

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

ERROR ANALYSIS OF SENSOR MEASURMENTS IN A
SMALL UAV

by

James Ackerman

September 2005

 Thesis Advisor: Isaac I. Kaminer
 Second Reader: Vladimir Dobrokhodov

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2005

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Error Analysis of Sensor Measurements in a Small
UAV

6. AUTHOR(S) James Scott Ackerman

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
This thesis focuses on evaluating the measurement errors in the gimbal system of the SUAV autonomous aircraft developed at
NPS. These measurements are used by the vision based target position estimation system developed at NPS. Analysis of the
errors inherent in these measurements will help direct future investment in better sensors to improve the estimation system’s
performance.

15. NUMBER OF
PAGES

63

14. SUBJECT TERMS
 Unmanned Aerial Vehicle, UAV, Target Tracking, Euler Angles, Camera Line of Sight, Minimum
Function (FMINUNC), Position Estimation, Piccolo, NPS Autopilot

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for Public Release; Distribution is Unlimited

ERROR ANALYSIS OF SENSOR MEASUREMENTS IN A SMALL UAV

James S. Ackerman
Ensign, United States Navy

BSEE, The Citadel, 2004

Submitted in partial fulfillment of the
Requirements for the degree of

MASTER OF SCIENCE IN ENGINEERING SCIENCE
(MECHANICAL ENGINEERING)

from the

NAVAL POSTGRADUATE SCHOOL
September 2005

Author: James S. Ackerman

Approved by: Dr. Isaac Kaminer

Thesis Advisor

Dr. Vladimir Dobrokhodov
Second Reader/Co-Advisor

Dr. Anthony Healey
Chairman, Department of Mechanical and
Astronautical Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This thesis focuses on evaluating the measurement errors in the gimbal system of

the SUAV autonomous aircraft developed at NPS. These measurements are used by the

vision based target position estimation system developed at NPS. Analysis of the errors

inherent in these measurements will help direct future investment in better sensors to

improve the estimation system’s performance.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..1
B. SUAV...2
C. CONTROL SYSTEM..4

1. Piccolo Autopilot ..5
2. NPS Autopilot...6

D. CAMERA..6
1. Gimbal Pan/Tilt Unit ...6
2. PerceptiVU..7

II. PROBLEM FORMULATION ...9
A. PROBLEM ...9

1. Gimbal Angle Errors ...9
B. AVAILABLE DATA ...9

1. Loading Data ..11
2. Geodetic to ECEF ..12
3. ECEF to LTP..13
4. Target Position in Camera Frame..14
5. Pixel Calculation ..17

C. ANALYSIS OF THE RESULTS. CONCLUSION....................................19

III. SYSTEM DEVELOPMENT...23
A. OVERVIEW...23
B. COMPUTING FOUND ANGLES ...23
C. COMPUTING IDEAL ANGLES ...26

1. Simulink Portion ..27
2. MATLAB Portion ..27

IV. RESULTS ...31
A. IDEAL ANGLES ...31
B. COMPARING RESULTS...32

1. Gimbal Angles ..32
C. RECOMMENDATION...34

APPENDIX A: SIMULINK BLOCK DIAGRAMS ...35
A. LOAD DATA BLOCK ..35
B. LLA TO ECEF BLOCK ...36
C. ECEF TO LTP BLOCK..37
D. TARGET POSITION IN CAMERA FRAME BLOCK38
E. COMPUTE PIXEL BLOCK ..38
F. COMPUTE FOUND ANGLES BLOCK...39

APPENDIX B: MATLAB CODE...41
A. FMINUNC MATLAB HELP FILE ...41

 viii

B. GIMBAL.M ..42
C. GIMBAL_OPTIMIZATION.M ...43

LIST OF REFERENCES..45

INITIAL DISTRIBUTION LIST ...47

LIST OF FIGURES

Figure 1. VBTT Architecture ..2
Figure 2. Gimbaled Camera. ...3
Figure 3. SUAV...3
Figure 4. SUAV and Camera. ...4
Figure 5. Piccolo Avionics Payload. ...5
Figure 6. Current Ground Station..5
Figure 7. Screen Shot from PerceptiVU..8
Figure 8. Entire Simulink Model...10
Figure 9. Geodetic Coordinate System..12
Figure 10. ECEF Coordinate System. ...13
Figure 11. Visual Representation of ,

c
LOS Tθ . ..15

Figure 12. Visual representation of ,
c

LOS Tψ ..15
Figure 13. Target Projection onto the Camera Frame ...17
Figure 14. Given vs. Found Pixel Location of the Target in Camera Frame.19
Figure 15. Plot of camera window. ...20
Figure 16. True Pixel Standard Deviation...21
Figure 17. Estimated Pixel Standard Deviation. ...21
Figure 18. Fα vs. Gα25
Figure 19. Fβ vs. Gβ26
Figure 20. FMINUNC Process Wide View...29
Figure 21. FMINUNC Process Zoom. ..30
Figure 22. Iα vs. Fα vs. Gα31
Figure 23. Iβ vs. Fβ vs. Gβ ...32
Figure 24. Difference Between Ideal Iα and Given Gα ...33
Figure 25. Difference Between Ideal Iβ and Given Gβ33
Figure 26. Load Data Block. ...35
Figure 27. LLA to ECEF Block. ...36
Figure 28. Implementation of ECEF Equations in LLA to ECEF Block..........................36
Figure 29. ECEF to LTP Block. ..37
Figure 30. Target Position in Camera Frame Block..38
Figure 31. Compute Estimated Pixel Block. ...38
Figure 32. Compute Pixel Size Block. ..39
Figure 33. Compute Found Angles Block...39

 ix

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Data input into simulink diagram. ...11

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

I would like to thank Dr. Isaac Kaminer and Dr. Vladimir Dobrokhodov for their

endless patience in assisting me to accomplish this task. There were many times when I

knew that the questions I was asking were trivial to them but they took the time to help

me understand what I needed to do to get the job done. I would also like to thank them

for their friendship that I believe we have built along the way. I thank them for giving

me this challenge that will make others down the road seem simple. I will always

remember them and look to the example they set of what hard work really is when I times

are hard. Both of these men have done a lot with their lives and I hope I can accomplish

as much some day.

I would also like to thank my wife who had to almost live without me for the

months it took me to finish this thesis. The time I wasn’t there for her was hard on her

but she persevered through it very well and I thank her for being strong for me.

I would also like to thank Todd Trago and Tom Brashear for their help. Whether

it was just being there to chat with and escape the pressure that a thesis puts on your

shoulders or being there to answer my usually stupid questions I thank them. I know

Todd will have a great career and I am positive Tom will continue his success.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. BACKGROUND
The purpose of the Small Unmanned Aerial Vehicle (SUAV) is to provide video

and target position estimations to the Tactical Network Topology (TNT) Experiment

being conducted by the Naval Postgraduate School. “TNT is an integrated program of

quarterly field experiments that develop and demonstrate new technologies to support

near term needs of the war fighter” [4]. The experiment focuses mainly on “wireless

networks, autonomous vehicles, sensor networks, situational awareness and target

tracking and identification” [4].

The SUAV is just one component in the TNT Experiment. The SUAV provides

Vision-Based Target Tracking (VBTT) which proves detailed reconnaissance and

simultaneous imagery, see Figure (1). The detailed reconnaissance includes target

position estimation. Targets can be acquired using an onboard gimbaled camera. The

angles of the camera (pointed toward a target) with respect to the body of the SUAV

along with telemetry data from an onboard Inertial Navigation System (INS) allows us to

estimate position of a target. Along with live video this target position estimation is the

main mission of the SUAV.

Gimbaled cameraGimbaled camera Piccolo avionicsPiccolo avionics

2.4GHz video link

ATT computerATT computerATT computerATT computer

Operator interfaceOperator interfaceOperator interfaceOperator interface

Pilot manual controlPilot manual controlPilot manual controlPilot manual control

900MHz Piccolo
protocol

NPS ground stationNPS ground stationNPS ground stationNPS ground station

Full duplex serial

Gimbals
control

command

Full duplex serial

Serial link

Piccolo ground stationPiccolo ground stationPiccolo ground stationPiccolo ground station

2

Guidance command

Serial link

Gimbaled cameraGimbaled camera Piccolo avionicsPiccolo avionics

2.4GHz video link

ATT computerATT computerATT computerATT computer

Operator interfaceOperator interfaceOperator interfaceOperator interface

Pilot manual controlPilot manual controlPilot manual controlPilot manual control

900MHz Piccolo
protocol

NPS ground stationNPS ground stationNPS ground stationNPS ground station

Full duplex serial

Gimbals
control

command

Full duplex serial

Serial link

Piccolo ground stationPiccolo ground stationPiccolo ground stationPiccolo ground station

Guidance command

Serial link

Figure 1. VBTT Architecture

B. SUAV

The SUAV is like the Predator UAV although it is a fraction of the size and price.

Its small size, light weight, ruggedness and endurance provide a very useful tool on the

battlefield.

Its primary payload is a gimbaled camera, Figure (2), that has an independent

control system, manually or autonomously controllable from the ground.

Figure 2. Gimbaled Camera.

The SUAV itself, Figures (3) and (4), is a modified hobby aircraft called the

Senior Telemaster. It comes in at 2.5 meters across the wings and at a weight of 8kg. The

SUAV is powered by a 23 cm gasoline powered two stroke engine that, when coupled

with its 1500 cm gas tank, has the ability to loiter for around three hours.

3

3

The SUAV carries the Piccolo avionics package which includes the INS; Piccolo

allows the SUAV to be autonomous.

Figure 3. SUAV.

3

Figure 4. SUAV and Camera.

C. CONTROL SYSTEM

The SUAV is equipped with an onboard integrated GPS/INS system which also

transmits position, velocity, acceleration, Euler rates and angles to the ground.

Computers on the ground, using this supplied telemetry data can then use it to control the

flight of the aircraft and make the SUAV navigation autonomous. Two types of autopilot

control are used on the SUAV, The Piccolo Autopilot system and the NPS Autopilot.

Both use the telemetry data which comes from the Piccolo avionics payload onboard the

aircraft, Figure (5). Rate gyros, accelerometers, a GPS receiver and a pressure sensor are

all part of the avionics payload. The payload communicates via a 900 MHz radio link to

the ground station, Figure (6).

4

Figure 5. Piccolo Avionics Payload.

Figure 6. Current Ground Station.

1. Piccolo Autopilot
Piccolo was developed by Cloud Cap Technology. It has a user interface

compatible with Windows run on a laptop computer in the field. The user interface

displays a map of the local area and allows the user to manipulate waypoints while the

SUAV is in flight and view telemetry data being sent from the aircraft. This data is saved

in a file as it arrives.

5

The SUAV can be put into autonomous mode or be switched into manual mode at

the press of a button. When in autonomous mode Piccolo controls the aircraft by flying

the aircraft to waypoints. However, when a target is locked, NPS Autopilot is engaged

and sends commands through the Piccolo software to the SUAV.

2. NPS Autopilot
NPS Autopilot was developed at the Naval Postgraduate School. It is an autopilot

system used once a target is locked to fly the SUAV around the target around the

trajectory that converges to a circle. Flying the SUAV around the target in a circle

enables calculations to be made to estimate the range to the target, Equation(0.1).

vρ
λ

= & (0.1)

Where λ& is the angular rate of the LOS to the target, is the velocity of the

SUAV and

v

ρ is the estimated range from the SUAV to the target. With the estimated

range to the target, the location of the SUAV, the Euler angles of the aircraft as well as

the gimbal angles all known, the target position can be estimated.

D. CAMERA

The camera, attached to a gimbal pan/tilt unit, is the primary payload of the

SUAV. Video data is sent to the ground from the UAV through a 2.4 GHz omni-

directional antenna and received through a high gain tracking antenna. Once received the

video information is time stamped and displayed through PerceptiVU on a computer

video screen. PerceptiVU is the program used to lock onto a target.

1. Gimbal Pan/Tilt Unit
While searching for a target the Gimbal Pan/Tilt Unit is under manual control

from the ground. While in manual mode the user observes real-time video through a

computer screen and moves the gimbal with a computer joystick. The range of the pan/tilt

unit is 90 degrees tilt (strait ahead to directly at the ground) and 360 degrees pan. The

movement of the joystick is converted into commands for the gimbal. Gimbal commands

6

7

are sent via one way communication to the SUAV through a 900 MHz radio link. The

gimbal is under autonomous control when locked on a target.

2. PerceptiVU

PerceptiVU is image tracking software. Developed by PerveptiVU inc. this is the

software we use to lock onto a target and stay locked on. A target lock is achieved by the

user manning the joystick. The user initially moves the gimbal so that the target is in the

PerceptiVU video screen and presses the trigger on the joystick. Once locked onto a

target, information provided by PerceptiVU software is used to control the gimbal

autonomously. While locked on, PerceptiVU outputs the location of the target in the

camera frame. The output is given in pixels. The pixel where the target sits in the

horizontal direction in the camera frame is called the “U” pixel. The vertical pixel is the

“V” pixel. The PerceptiVU frame has 320 pixels horizontal and 240 pixels vertical

resolution.

During the screen shot in Figure (7) PerceptiVU would output pixel values of

+30V and +40U for example. The gimbal commands while locked onto a target are

based on this U, V data. The pitch rate commands to the gimbal depend on the V pixel.

The yaw rate commands to the gimbal depend on the U pixel. These commands are

meant to keep the target in the center of the camera frame.

When the user wants to disengage and regain manual control of the gimbal the

trigger is pulled again and the target is disengaged.

 +30 V

 +40 U

Figure 7. Screen Shot from PerceptiVU.

8

9

II. PROBLEM FORMULATION

A. PROBLEM

Errors in the target position estimation range on average from 20 to 50 meters.

Some of these errors are attributed to imperfect measurements of Euler angles by Piccolo

INS and of gimbal angles by NPS ground station. The purpose of this thesis is to use

available flight test data to quantify the errors in the Gimbal angle measurement.

The approach adopted in this thesis is twofold:

• Using known target and UAV positions, use Euler and gimbal angle
measurements to determine where the target would appear in the camera
frame. Compare computed Target position with actual taken during the
flight test

• Using PerceptiVU measurements, determine the gimbal angles that would
result in these measurements. Compare these resultant angles with flight
test data.

1. Gimbal Angle Errors
The gimbal data likely represents a source of errors. In this work it is assumed

that commands sent to the gimbal are executed immediately, therefore output position of

the camera attached to it is equal to the input command. However, extensive

experimentation shows that this in not the case. Several factors distort this input-output

relation:

• Calibration of the gimbal;

• Time delay introduced by wireless RF link;

• Noise due to the atmospheric and engine noise.

B. AVAILABLE DATA

To address these problems we will use the following flight test data:

• Position of the target in the camera frame provided by PerceptiVU;

• The location of the SUAV in geodetic coordinates;

• The location of the target in geodetic coordinates;

• The Euler angles of the aircraft in radians;

• The gimbal angles in radians;

• Video recording from the camera on the specific flight.

From this data we can calculate orientation of the camera. Using this orientation

and the known location of the target we can estimate the location of the target in the

camera frame and compare it to the true data taken from PerceptiVU. The difference in

this location of the target in the camera frame will provide us insight into the errors in the

gimbal angles of the SUAV. To calculate the estimated pixel location MATLAB 7.0

Simulink was used. A Simulink implementation of the approaches outlined in II.A is

presented in Figure (8).

Figure 8. Entire Simulink Model

10

1. Loading Data
Loading the data is the first block of the Simulink diagram. For each flight of the

SUAV its telemetry, gimbal and PerceptiVU data is saved versus real-time in the form of

a MATLAB .mat file. The data loaded at the first step of the Simulink model, Figure (8)

is presented in Table 1.

Data (units) Subfile Element

Target Position (rad,m) N/A N/A

SUAV Latitude (rad) Telem 1

SUAV Longitude (rad) Telem 2

SUAV Altitude, above ground (m) Telem 3

SUAV Roll, psi, Gϕ (rad) Ctrl 24

SUAV Pitch, theta, Gθ (rad) Ctrl 25

SUAV Yaw, psi, Gψ (rad) Ctrl 26

Gimbal Pitch, tilt, Gα Gmbl 1

Gimbal Yaw, pan, Gβ Gmbl 2

Gimbal Lock Gmbl 3

PerceptiVU (pixel) trueU Gmbl 4

PerceptiVU (pixel) trueV Gmbl 5

Table 1. Data input into simulink diagram.

The Simulink block that loads the data can be seen in Appendix (A.A).

11

2. Geodetic to ECEF
Flight test data provides the position of the target and SUAV in geodetic

coordinates, Figure (9). In order to solve our task we need to transfer coordinates into a

Local Tangent Plane (LTP). This transformation is done in two steps: first, is rotation

from geodetic to ECEF (Figure (10)); second is to rotate from ECEF to LTP.

First step is accomplished through Equation(0.2).

2 2

2

1 sin

() cos cos

() cos sin

((1))sin

e

e

e

e

rr

x r h

y r h

z r h

λ

λ

λ

λ

ε ϕ

ϕ λ

ϕ λ

ε ϕ

=
−

= +

= +

= − +

 (0.2)

Where:

• ϕ is the Latitude angle (rad)

• λ is the Longitude angle (rad)

• h is the height above sea level (m)

Implementation of these equations using Simulink viewable in Appendix (A.B).

Figure 9. Geodetic Coordinate System.

12

Figure 10. ECEF Coordinate System.

3. ECEF to LTP
LTP is a right hand rule reference frame which has its origin at a chosen spot. For

this case the LTP origin is placed at the target position. The North-East-Down (NED)

orientation of the LTP is assumed. Equation (0.3) shows the rotation matrix used to

transform ECEF to LTP.

sin cos sin sin cos
sin cos 0

cos cos cos sin sin

NED
e R

ϕ λ ϕ λ
λ λ

ϕ

ϕ λ ϕ λ

− −⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥− − −⎣ ⎦ϕ

 (0.3)

ϕ and λ in Equation (0.3) are the Latitude and Longitude in the geodetic frame

respectively.

arg*()e NED e e
SUAV e SUAV t etp R p p= − (0.4)

13

14

]

 The position of the SUAV in LTP coordinates, with components

, is found through Equation (0.4) where is the

position of the SUAV represented in ECEF coordinates, and is the location of the

target in ECEF coordinates. Equation (0.5) calculates the position of the target in LTP

frame. Recall, is the origin and should be equal to [0,0,0].

NED
SUAVp

,[,NED NED NED
SUAV SUAV SUAVx y z e

SUAVp

arg
e

T etp

arg
e

T etp

arg arg arg*()NED NED e e
T et e T et t etp R p p= − (0.5)

Implementation of this transformation using Simulink can be seen in Appendix

(A.C).

4. Target Position in Camera Frame
With the Target position and SUAV position in LTP frame we can calculate the

range from the SUAV to the Target in Equation(0.6).

2 2() () (NED NED NED
SUAV SUAV SUAVx y zρ = + + 2) (0.6)

Consider Figure (11) and Figure (12). Angular position of the target in the

camera frame is given by ,
c

LOS Tθ and ,
c

LOS Tψ .

cx

cz
c

Tp

,
c

LOS Tθ

Figure 11. Visual Representation of ,
c

LOS Tθ .

cx

cy

c
Tp

,
c

LOS Tψ

Figure 12. Visual representation of ,
c

LOS Tψ .

These two angles are computed using the vector from the SUAV to the Target and

two rotation matrices. Because we let the target position be the origin of the LTP frame,

the vector from the SUAV to the Target is . The first rotation matrix,

Equation(0.7), uses the Given Gimbal Angles, where

NED
SUAVp−

Gα is the given tilt gimbal angle

and Gβ is the given gimbal pan angle, from flight test data. The second rotation matrix,

Equation(0.8), uses the Given Euler Angles from Piccolo telemetry.

cos cos sin sin cos
cos sin cos sin sin

sin 0 cos

G G G G
b
g G G G G

G G

R
G

G

α β β α β
α β β α β

α α

− −⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

 (0.7)

15

16

G

cos cos cos sin sin sin cos cos sin cos
sin cos sin sin sin cos cos sin sin cos cos sin

sin cos sin cos cos

G G G G G G G G G G
n
b G G G G G G G G G G G

G G G G G

R
ψ θ ψ θ ϕ ψ ϕ ψ θ ϕ
ψ θ ψ θ ϕ ψ ϕ ψ θ ϕ ψ ϕ

θ θ ϕ θ ϕ

−⎡ ⎤
⎢ ⎥= +⎢ ⎥
⎢ ⎥−⎣ ⎦

−

 (0.8)

Equation(0.9) rotates the vector from the SUAV to the Target, , around

the flight test data gimbal angles to give us the position of the target in the body

frame,

NED
SUAVp−

b
Tp .

*()b b NED
T g SUAVp R p= − (0.9)

Equation(0.10) rotates the position of the target in the body frame to the position

in the camera frame, c
Tp .

*c n b
T b Tp R p= (0.10)

Position of the Target in the camera frame, c
Tp , has components [, ,]c c c

T T Tx y z .

These components are used in the computation of the tilt angle to the target in the camera

frame, ,
c

LOS Tθ , in Equation (0.11) and Figure (11). The pan angle to the target in the

camera frame, ,
c

LOS Tψ , is found in Equation (0.12) and Figure (12).

, tan()
c

c T
LOS T c

T

za
x

θ = (0.11)

, tan()
c

c T
LOS T c

T

ya
x

ψ = (0.12)

The angular location of the target in the camera frame and the range are used to

calculate pixel number in the camera frame, Figure (13).

cy

c
Tp

Camera

cx
Target

Horizontal Position of Target
in Camera Frame

cz
cy

cz

 Camera LOS

Figure 13. Target Projection onto the Camera Frame

Implementation of the equations in this section using Simulink can be seen in

Appendix (A.D).

5. Pixel Calculation

Our first task calls for us to compare and with and . In

order to compute and we need the following:

estimateV estimateU trueV trueU

estimateV estimateU

• Range from SUAV to Target, ρ

• Field of view of the camera, FOVθ and FOVψ

• Angular position of the target in the camera frame, ,
c

LOS Tθ and ,LOS Tψ

To find FOVθ and FOVψ we set up the camera and pointed it at a wall. We

measured the distance from the camera frame to the wall, d . One the wall we measured

the width, , and height, z, of the camera’s field of view. y

17

2* tanFOV
za
d

θ = (0.13)

2* tanFOV
ya
d

ψ = (0.14)

Equation (0.13) shows us the field of view (FOV) in the vertical direction, FOVθ .

Equation (0.14) finds the horizontal FOV, FOVψ .

Once we know the camera field of view in the horizontal and vertical directions

we can compute the pixel size, Equation (0.15) and (0.16) respectively. Note that 240 is

the number of pixels in the PerceptiVU window vertically while there are 320 pixels

across the screen horizontally.

2 tan()
2

240

FOV

pixszv

θρ
= (0.15)

2 tan()
2

320

FOV

pixszu

ψρ
= (0.16)

The distance from the center of the camera frame to the target position in the

camera frame, vertically and horizontally, is calculated in Equations (0.17) and (0.18)

respectively.

,tan()c
dist LOS Tv ρ θ= (0.17)

,tan()c
dist LOS Tu ρ ψ= (0.18)

This distance divided by pixel size, Equations (0.19) and (0.20), gives us the

position of the target in the camera frame with pixels as the units.

18

dist
estimate

pixsz

vV
v

= (0.19)

dist
estimate

pixsz

uU
u

= (0.20)

Implementation of the equations in this section using Simulink can be seen in

Appendix (A.E).

C. ANALYSIS OF THE RESULTS. CONCLUSION

The and pixels do not match up to and , Figure (14).

This offset in the pixel location of the target in the camera frame proves to us that there is

an error. This data suggests to us that there is a bias error in the pan angle of the camera

and a larger bias in the tilt angle of the camera.

estimateV estimateU trueV trueU

-500 -400 -300 -200 -100 0 100 200 300 400 500
-500

-400

-300

-200

-100

0

100

200

300

400

500
True and Estimated Pixel Locations

Horizontal Pixel Number, U

V
er
tic
al
 P
ix
el
 N
um
be
r,
V

Boundary of Image FrameBoundary of Image Frame

True Pixel
Est. Pixel

Figure 14. Given vs. Found Pixel Location of the Target in Camera Frame.

19

The mean pixel number is -1.7041 and the mean pixel number is 7.863

for this set of data. This is near the center of the camera frame. The Estimated pixels,

however, are not near the center of the camera frame. The mean pixel number is

306.2 and the mean pixel number is 104.5. The difference between and

 is 307.9 pixels. The difference between and is 96.63 pixels. The mean

location of the vertical pixel wouldn’t even put the target into the visible camera frame

since the visible frame only goes to +120 pixels vertically, Figure (15).

trueV trueU

estimateV

estimateU estimateV

trueV estimateU trueU

-150 -100 -50 0 50 100 150

-100

-50

0

50

100

True and Estimated Pixel Locations

Horizontal Pixel Number, U

V
er
tic
al
 P
ix
el
 N
um
be
r,
V

True Pixel
Est. Pixel

Figure 15. Plot of camera window.

The standard deviation of the True Pixels , _ [19.42,27.71]T pixelσ = , seen in Figure

(16) is much lower than the standard deviation of the Estimated Pixels,

_ [65.83,48.37]Est pixelσ = , seen in Figure (17).

20

-80 -60 -40 -20 0 20 40 60 80 100
-60

-40

-20

0

20

40

60
Standard Deviation of True Pixels

Horizontal Pixel Number, U

V
er
tic
al
 P
ix
el
 N
um
be
r,
V

Pixel
3*StdDev
StdDev

Figure 16. True Pixel Standard Deviation.

-50 0 50 100 150 200 250
0

100

200

300

400

500

600
Standard Deviation of Estimated Pixels

Horizontal Pixel Number, U

V
er
tic
al
 P
ix
el
 N
um
be
r,
V

Pixel
3*StdDev
StdDev

Figure 17. Estimated Pixel Standard Deviation.

21

In conclusion, the comparison between the / pixels and the True

pixels demonstrates that there is a biased constant error, that might be modeled as a fixed

bias. The error comes from the Given Gimbal and Euler Angles. Using these angles for

position estimation will therefore lead to a coherent error in the estimated target position.

estimateV estimateU

22

III. SYSTEM DEVELOPMENT

A. OVERVIEW

Since there are errors in the orientation of the LOS we must find the source of this

error. The LOS vector is used in the SUAVs most important mission, estimating the

geodetic location of a target. With an incorrect LOS vector the NPS Autopilot

commands will be off as well causing the SUAV to circle around a biased point, but not

the target’s position.

To find where the most errors come from in the system we must first calculate

Gimbal angles that would match and pixel location of the target with

and pixel location. If the two pixel locations match, we know the LOS from the

UAV to the target is correct and a more accurate target position is being estimated. For

every time step the Ideal Gimbal Angles (

estimateV estimateU trueV

trueU

Iα and Iβ) will be computed so that the

estimated and true pixels equal to one another.

The “Ideal” gimbal angles will be computed and compared with the gimbal angles

that we have from the flight test data, Given angles. The difference between the Given

and Ideal Gimbal Angles will show us the error.

B. COMPUTING FOUND ANGLES

The Found Angles (Fα , Fβ) are those angles that will direct the camera LOS to

point directly toward the target. Transformation (0.21) is used to rotate a unity vector of

the LOS in camera frame ([) to inertial frame ([1,0,0] LOSx ; ;]) by using three

consecutive rotations:

LOSy LOSz

• g
c R - from Camera to Gimbal.

• b
g R - from Gimbal to Body.

• n
b R - from Body to Inertial.

23

24

⎤
⎥
⎥
⎥⎦

1
0
0

LOS
n b g

LOS b g c

LOS

x
y R R R
z

⎡ ⎤ ⎡
⎢ ⎥ ⎢=⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

 (0.21)

The rotation matrix g
c R , which contains the angles found later in equations (0.26)

and (0.27), is removed from this part of the process, since those angles are not yet know,

and is re-introduced when solving for the Ideal Angles in part C of this section.

Found Gimbal Angles are computed while using the Given Euler Angles in the
n
b R rotation matrix of Equation(0.22).

1
0
0

LOS
b b
n LOS g

LOS

x
R y R

z

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢= ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (0.22)

Equation (0.23) through (0.25) calculate Found Gimbal Angles. Since the gimbal

only uses two angles and we have three known values we can solve Equation(0.23).

cos cos
sin cos

sin

F F

F F

F

x
y
z

β α
β α

α

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 (0.23)

Simplified out we can solve for the Found Fα , Equation (0.24), and Found Fβ ,

Equation (0.25).

sin()F a zα = − (0.24)

tan()F
ya
x

β = (0.25)

The Found Angles for the gimbal, Fα and Fβ , are shown in Figure (18) and
Figure (19).

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Gimbal Theta Angles

Time, .1 sec

G
im
ba
l A
n
gle
 T
he
ta
 (P
itc
h
)

Found
Given

Figure 18. Fα vs. Gα .

25

0 50 100 150 200 250 300
-2

-1.9

-1.8

-1.7

-1.6

-1.5

-1.4

-1.3

-1.2
Gimbal Psi Angles

Time, .1 sec

G
im
ba
l A
n
gle
 P
si
 (Y
aw
)

Found
Given

Figure 19. Fβ vs. Gβ .

Notice that in most of the Found Angles there is a very noticeable, almost

constant, difference from the given data. Although the Found Angles are not the Ideal

Angles, they still give us an initial idea of where the errors are occurring in the system.

Gimbal α and β angles both appear to follow the same trend but with a bias between

them. Computing the Ideal Angle will give us the final angles we are looking for and we

can draw our conclusions from there.

Implementation of this section using Simulink is in Appendix (A.F).

C. COMPUTING IDEAL ANGLES

The Found Angle is calculated to give us a decent initial condition to feed into the

iterative process used to calculate the Ideal Angles. The Found Angle points the camera

directly at the target. Looking at our flight data, however, and the and pixels it

gives us, we know that the camera is rarely pointed exactly toward the target, Figure (7).

We know the camera is slightly off the direct line pointing toward the target and the

target is moving around the screen. Computing the Ideal Angles takes into account this

trueV trueU

26

small difference between the vector directly to the target and to the true center of the

camera frame.

1. Simulink Portion

The angles between the true camera vector and the true pixel location can be

calculated as follows using the calculated pixel size and range.

, _

*
tan()true pixszc

LOS T TRUE

V v
aθ

ρ
= (0.26)

, _

*
tan()true pixszc

LOS T TRUE

U u
aψ

ρ
= (0.27)

Once these true LOS to target angles are computed a MATLAB code is used to

compute the Ideal Angles.

The data we have obtained from Simulink and will use to find the Ideal Angles

are:

• Given Euler Angles (b_g.mat)

• Given and Found Gimbal Angles (g_g.mat and g_f.mat)

• SUAV to Target Vector, (los.mat) NED
SUAVp−

• True LOS to True Target Position Angles, , _
c

LOS T TRUEθ , , _
c

LOS T TRUEψ (l.mat)

Parenthesis indicates the file name that this data is saved to after each run of the

model.

2. MATLAB Portion

The data obtained in Simulink is saved and run through a MATLAB function to

calculate the set of Ideal Angles. The .m file called gimbal.m, Appendix (B.B), is used to

calculate the Ideal Gimbal Angles.

The FMINUNC command, Appendix (B.A,C), run in MATLAB calls upon the

gimbal.m file. The FMINUNC function iterates through combinations of angles until the

condition of the FMINUNC command is satisfied, Equation(0.28). When the condition

of FMINUNC is satisfied, the LOS vector and the vector [1;0;0] rotated through the three

rotation matrices are equal.

27

28

0)
1

(
0

LOS
b g c

LOS n b g

LOS

x
F norm y R R R

z

⎡ ⎤ ⎡ ⎤
⎢ ⎥= − ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (0.28)

When searching for the Ideal Gimbal Angles, the angles inside of the g
b R rotation

matrix are the ones that will be changed until the condition is satisfied. The angles inside
b
n R are the Given Euler Angles from Piccolo. The angles inside c

g R were calculated

with Equations (0.26) and (0.27).

Once the FMINUNC function’s condition is satisfied it will output the Ideal

Angles. As was said earlier the Found Angles are used as initial conditions or the starting

point in finding the Ideal Angles. It was decided that the Found angles were satisfactory

as an initial condition, because the actual position of the target is never too far away from

the center of the camera frame, where the Found Angles are pointing.

Figure (20) is included to show visually how the FMINUNC function converges

at its solution. At a specific time in the data set the FMINUNC function runs through

gimbal angles until the minimum of the function is reached.

Figure 20. FMINUNC Process Wide View

Looking closer towards the minimum of Figure (20) we get Figure (21).

Readings from the figure gives us a tilt (Iα) value at the minimum found between .885

and .89, near .8855. The pan (Iβ) value at the minimum is between -1.552 and -1.554,

near -1.5535. The FMINUNC function would then output [.8855,-1.5535] as the answer

at this specific time. These are the Ideal Angle we are looking for.

29

Figure 21. FMINUNC Process Zoom.

30

IV. RESULTS

A. IDEAL ANGLES

The FMINUNC function gave us the results illustrated in Figures (22) and (23).

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Gimbal Theta Angles

Time, .1 sec

G
im
ba
l A
n
gle
 T
he
ta
 (P
itc
h
)

Ideal
Found
Given

Figure 22. Iα vs. Fα vs. Gα .

31

0 50 100 150 200 250 300
-2

-1.9

-1.8

-1.7

-1.6

-1.5

-1.4

-1.3

-1.2
Gimbal Psi Angles

Time, .1 sec

G
im
ba
l A
n
gle
 P
si
 (Y
aw
)

Ideal
Found
Given

Figure 23. Iβ vs. Fβ vs. Gβ .

B. COMPARING RESULTS

1. Gimbal Angles

Upon visual inspection it follows that the Given Gimbal Angles follow the same

path as the Ideal Gimbal Angles but are offset from one another by a certain bias,

Figure (22) and Figure (23). The offset or bias are plotted in Figure (24) and Figure (25).

This could be attributed to errors in the calculation of the Ideal Gimbal Angles or it could

be caused by some bias error in the given data.

32

0 50 100 150 200 250 300
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Time, .1 sec

D
iff
er
en
ce

Gimbal Theta Difference

Figure 24. Difference Between Ideal Iα and Given Gα .

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Time, .1 sec

D
iff
er
en
ce

Gimbal Psi Difference

Figure 25. Difference Between Ideal Iβ and Given Gβ .

33

It suggests that a simple addition or gain in the gimbal command could fix the

bias in the α and β angles. Fixing the bias would match the Given Angles to the Ideal

Angles. Eliminating the bias in the Gimbal Angles from the NPS ground station

readiness/telemetry would reduce the error in the target position estimation.

C. RECOMMENDATION
My recommendation to the project is to invest additional resources into the

following projects.

• A model of the gimbal that will account errors induced while sending data
to the gimbal, i.e. time delay, gimbal movement delays.

• Taking the bias between the Ideal Gimbal Angles and the Given Gimbal
Anlges into account when using the Given Gimbal Angle for position
estimation.

• In depth Gimbal calibration investigation.

• A more accurate measuring device onboard the SUAV for better readings
of its Euler Angles.

It appears that some changes can be made in the gimbal loop that will not raise the

price of the SUAV. In the future, research should be done on modeling the gimbal

dynamics and looking deeper into the bias found there. If that does not solve the

problem, then a better avionics package onboard the SUAV might solve our problems.

34

APPENDIX A: SIMULINK BLOCK DIAGRAMS

A. LOAD DATA BLOCK

angles in rad
alt in meters

angles in rad, alt in feet above sea level

double cl ick on matrix in workspace to open
in array editor. save file through array editor

as telem, ctrl, gmbl

GIVEN DATA

6
Given v,u Pixel

5
Target Lock

4
Given Gimble

Command Angles (rad)

3
Given UAV Euler Angles (rad)

2
Given Position UAV, GPS (LLA)

1
Given Position T, GPS (LLA)

Switch

UU(E)
Select UAV Yaw

(element 26)

UU(E)
Select UAV Roll

(element 24)
UU(E)

Select UAV Pitch
(element 25)

UU(E)
Select UAV Lon

(element 2)

UU(E)
Select UAV Lat

(element 1)

UU(E)
Select UAV Alt

(element 3)

UU(E)
Select Target Lock

(element 3)

UU(E)
Select Target Alt

(element 3)

UU(E)
Select Perceptivu V

(element 5)
UU(E)

Select Perceptivu U
(element 4)

UU(E)
Select Gimble Tilt

(element 1)
UU(E)

Select Gimble Pan
(element 2)

Scope3

Scope2

Scope1

Scope

-C-

Given Position T,GPS

0

Gimble Roll (zero)

gmbl

From File2

ctrl

From File1

telem

From File

u yfcn

Embedded
MATLAB Function

0

Display4

0

Display3

0

Display2

0

Display1

0

Display

1

Constant

Add

Figure 26. Load Data Block.

35

B. LLA TO ECEF BLOCK

LLA to ECEF

2
P UAV,ECEF

1
P T,ECEF

-C-

polar radius

-C-

equator radius

diff

Scope2

Scope1

Scope

Product

UAV GPS in UAV ECEF out

LLA to ECEF1

Target GPS in Target ECEF out

LLA to ECEF

[Eccentricity]

GotoDivide

1

Constant

2
P UAV,GPS

1
P T,GPS

Figure 27. LLA to ECEF Block.

x T,ECEF

e^2

y T,ECEF

z T,ECEF

1
Target ECEF out

subtract1

-C-

equator radius2

1

constant2

1

constant1

sin

Trigonometric
Function4

cos

Trigonometric
Function3

cos

Trigonometric
Function2

sin

Trigonometric
Function1

sin

Trigonometric
Function

Product8

Product7
Product6

Product4

Product2

Product1

sqrt

Math
Function1

[longT]

Goto7
[hT]

Goto4

[latT]

Goto3

[rdeltT]

Goto1

[hT]

From8

[rdeltT]

From7

[Eccentricity]

From6

[longT]

From5

[latT]

From4 [hT]

From3

[rdeltT]

From2

[latT]

From1

[Eccentricity]

From

Divide1

1
Target GPS in

Figure 28. Implementation of ECEF Equations in LLA to ECEF Block.

36

C. ECEF TO LTP BLOCK

(P T,LTP) = Re2u*(P T,ECEF) [0,0,0]

(P UAV,LTP) = Re2u*((P UAV,ECEF) - (P T,ECEF))

ECEF to LTP

2
P UAV,LTP

1
P T,LTP

Scope1

Scope

Matrix
Multiply

Product2

Matrix
Multiply

Product
[hT]

From2

[longT]

From1

[latT]

From

latT

longT

hT

Re2ufcn

Embedded
MATLAB Function

2
P UAV,ECEF

1
P T,ECEF

Figure 29. ECEF to LTP Block.

The MATLAB code within the Embedded MATLAB Function of Figure (39).

function Re2u = fcn(latT,longT,hT)
% This block supports an embeddable subset of the MATLAB language.
% See the help menu for details.

Re2u=[cos(latT)*cos(longT) cos(latT)*sin(longT) sin(latT);
 -sin(longT) cos(longT) 0;
 -sin(latT)*cos(longT) -sin(latT)*sin(longT) cos(latT)];

RNED=[0 0 1;0 1 0;-1 0 0];

Re2u=RNED*Re2u;

37

D. TARGET POSITION IN CAMERA FRAME BLOCK

Theta, Psi angles LOS -> Target

UAV RANGE to TARGET, UAV to TARGET VECTOR, LOS to TARGET ANGLES

UAV to target

3
UAV 2 Target Vector

2
LOS to Target Angles (rad)

1
Range to Target

f(u)

atan(z/x)

f(u)

atan(y/x)

Unity Vector
UAV 2 Target

Scope4

Scope3

Scope2

Scope1

Scope

axis
Ru2b

Inertial->Body2

axis

Ru2b
Camera->LOS

axis
Ru2b

Camera->Camera shifted

axis

Ru2b
B->Camera

Product

sqrt

Math
Function

Matrix
Multiply

LOS in Camera Frame

-K-

Gain

1

2

3

4

C_IC

From Inertia->LOS

[0;0;0]

Constant1

[0;0;0]

Constant

Add

4
Gimble Angles (rad)

3
UAV Angles (rad)

2
P UAV,LTP

1
P T, LTP

Figure 30. Target Position in Camera Frame Block.

E. COMPUTE PIXEL BLOCK

V Pixel

U Pixel

COMPUTE ESTIMATED PIXEL

1
Pixel Number

(v,u)

[v_size]

[u_size]

tan

tan1

tan

tan

Switch

Product1

Product

Divide1

Divide

1

Constant

Range UAV to Target
V Pixel Size

U Pixel Size

Compute Pixel Size

3
Target Lock

2
LOS to Target Angles (rad)

1
Range

UAV to Target

Figure 31. Compute Estimated Pixel Block.

38

2
U Pixel Size

1
V Pixel Size

tan

Trigonometric
Function1

tan

Trigonometric
Function

Product2

Product

240

Pixels in V direction

320

Pixels in U direction

-C-

FOV angle
Vertical (rad)

-C-

FOV angle
Horizontal (rad)

Divide4

Divide3

Divide2

Divide1
2

1
Range UAV to Target

Figure 32. Compute Pixel Size Block.

F. COMPUTE FOUND ANGLES BLOCK

Given LOS to Target
Angles Using Given v,u Pixels

COMPUTE FOUND GIMBAL AND EULER ANGLES

changed to
+ from -

4
Found Euler Angles (rad)1

3
Euler Angle Difference

2
Gimble Angle Difference

1
Found Gimble Angles (rad)

39

[l]
l

[g_g]
g_f1

[g_f]
g_f

[Euler]
b_g

[b_f]
b_f

atan

atan [Euler]
UAV Angles2

[Euler]
UAV Angles1

asin

Theta_c = -asin(z)1

asin

Theta_c = -asin(z)

UU(E)
Selector

Scope1
Reshape

Reshape
9x1->3x3

Reshape

Reshape
9x1->3x1

Gimble Angles (rad) Out1

Rb2g

UAV Angles (rad) Out1

RLTP2b

atan2

Psi_c =atan (y/x)1

atan2

Psi_c =atan (y/x)

Matrix
Multiply

Product3

Matrix
Multiply

Product

[g_g]
LOS vector2

[los]
LOS vector1

[los]
LOS vector

[l]
LOS angles

los

LOS Vector

l

Given LOS to
Target Angles

g_g

Given Gimble
Angles

b_g

Given Euler Angles

-K-

-K-

[u_size]
From1

[v_size]
From

g_f

Found Gimble
Angles

[g_f]
Found Gimbal Angles (rad)

[b_f]
Found Euler Angles (rad)

b_f

Found Euler
Angles

0

Display

5
Given v,u Pixel

4
Gimble Angles

3
UAV Angles (rad)

2
UAV 2 Target Vector, LTP

1
Range UAV to Target

Figure 33. Compute Found Angles Block.

40

THIS PAGE LEFT INTENTIONALLY BLANK

41

APPENDIX B: MATLAB CODE

A. FMINUNC MATLAB HELP FILE
FMINUNC finds the minimum of a function of several variables.
 X=FMINUNC(FUN,X0) starts at X0 and attempts to find a local minimizer X
 of the function FUN. FUN accepts input X and returns a scalar function
 value F evaluated at X. X0 can be a scalar, vector or matrix.

 X=FMINUNC(FUN,X0,OPTIONS) minimizes with the default optimization
 parameters replaced by values in the structure OPTIONS, an argument
 created with the OPTIMSET function. See OPTIMSET for details. Used
 options are Display, TolX, TolFun, DerivativeCheck, Diagnostics,
 FunValCheck GradObj, HessPattern, Hessian, HessMult, HessUpdate,
 InitialHessType, InitialHessMatrix, MaxFunEvals, MaxIter,
 DiffMinChange and DiffMaxChange, LargeScale, MaxPCGIter,
 PrecondBandWidth, TolPCG, TypicalX. Use the GradObj option to specify
 that FUN also returns a second output argument G that is the partial
 derivatives of the function df/dX, at the point X. Use the Hessian
 option to specify that FUN also returns a third output argument H that
 is the 2nd partial derivatives of the function (the Hessian) at the
 point X. The Hessian is only used by the large-scale method, not the
 line-search method.

 [X,FVAL]=FMINUNC(FUN,X0,...) returns the value of the objective
 function FUN at the solution X.

 [X,FVAL,EXITFLAG]=FMINUNC(FUN,X0,...) returns an EXITFLAG that describes
 the exit condition of FMINUNC. Possible values of EXITFLAG and the
 corresponding exit conditions are

 1 FMINUNC converged to a solution X.
 2 Change in X smaller than the specified tolerance.
 3 Change in the objective function value smaller than the specified
 tolerance (only occurs in the large-scale method).
 0 Maximum number of function evaluations or iterations reached.
 -1 Algorithm terminated by the output function.
 -2 Line search cannot sufficiently decrease the objective function along
 the current search direction (only occurs in the medium-scale method).

 [X,FVAL,EXITFLAG,OUTPUT]=FMINUNC(FUN,X0,...) returns a structure OUTPUT
 with the number of iterations taken in OUTPUT.iterations, the number
 of function evaluations in OUTPUT.funcCount, the algorithm used in
 OUTPUT.algorithm, the number of CG iterations (if used) in
 OUTPUT.cgiterations, the first-order optimality (if used) in
 OUTPUT.firstorderopt, and the exit message in OUTPUT.message.

 [X,FVAL,EXITFLAG,OUTPUT,GRAD]=FMINUNC(FUN,X0,...) returns the value
 of the gradient of FUN at the solution X.

 [X,FVAL,EXITFLAG,OUTPUT,GRAD,HESSIAN]=FMINUNC(FUN,X0,...) returns the
 value of the Hessian of the objective function FUN at the solution X.

 Examples
 FUN can be specified using @:
 X = fminunc(@myfun,2)

 where MYFUN is a MATLAB function such as:

 function F = myfun(x)
 F = sin(x) + 3;

 To minimize this function with the gradient provided, modify
 the MYFUN so the gradient is the second output argument:
 function [f,g]= myfun(x)
 f = sin(x) + 3;
 g = cos(x);
 and indicate the gradient value is available by creating an options

42

 structure with OPTIONS.GradObj set to 'on' (using OPTIMSET):
 options = optimset('GradObj','on');
 x = fminunc('myfun',4,options);

 FUN can also be an anonymous function:
 x = fminunc(@(x) 5*x(1)^2 + x(2)^2,[5;1])

 If FUN is parameterized, you can use anonymous functions to capture the

problem-
 dependent parameters. Suppose you want to minimize the objective given in the
 function MYFUN, which is parameterized by its second argument A. Here MYFUN is
 an M-file function such as

 function [f,g] = myfun(x,a)

 f = a*x(1)^2 + 2*x(1)*x(2) + x(2)^2; % function
 g = [2*a*x(1) + 2*x(2) % gradient
 2*x(1) + 2*x(2)];

 To optimize for a specific value of A, first assign the value to A. Then
 create a one-argument anonymous function that captures that value of A
 and calls MYFUN with two arguments. Finally, pass this anonymous function
 to FMINUNC:

 a = 3; % define parameter first
 options = optimset('GradObj','on'); % indicate gradient is provided
 x = fminunc(@(x) myfun(x,a),[1;1],options)

 See also optimset, fminsearch, fminbnd, fmincon, @, inline.

B. GIMBAL.M
function [F] = gimbal(x)
% this block sets up the function to be used in the optimization
%finding the best tilt and pan angles to show gimble command error

load los;
load b_g;
load l;
load g_f;
global i

LOS_v = [los(2,i);los(3,i);los(4,i)];

Rb2LTP=[cos(b_g(4,i))*cos(b_g(3,i)) sin(b_g(4,i))*cos(b_g(3,i)) -
sin(b_g(3,i));cos(b_g(4,i))*sin(b_g(3,i))*sin(b_g(2,i))-
(sin(b_g(4,i))*cos(b_g(2,i)))
sin(b_g(4,i))*sin(b_g(3,i))*sin(b_g(2,i))+(cos(b_g(4,i))*cos(b_g(2,i)))
cos(b_g(3,i))*sin(b_g(2,i));cos(b_g(4,i))*sin(b_g(3,i))*cos(b_g(2,i))+(sin(b_g(4,i
))*sin(b_g(2,i))) sin(b_g(4,i))*sin(b_g(3,i))*cos(b_g(2,i))-
(cos(b_g(4,i))*sin(b_g(2,i))) cos(b_g(3,i))*cos(b_g(2,i))].';

Rc2b=[cos(x(1))*cos(x(2)) cos(x(1))*sin(x(2)) sin(x(1));-sin(x(2)) cos(x(2)) 0;-
sin(x(1))*cos(x(2)) -sin(x(1))*sin(x(2)) cos(x(1))].';

RLOS2c=[cos(l(2,i))*cos(l(3,i)) cos(l(2,i))*sin(l(3,i)) sin(l(2,i));-sin(l(3,i))
cos(l(3,i)) 0;-sin(l(2,i))*cos(l(3,i)) -sin(l(2,i))*sin(l(3,i)) cos(l(2,i))].';

F=norm(LOS_v-(Rb2LTP*Rc2b*RLOS2c*[1;0;0]));

43

C. GIMBAL_OPTIMIZATION.M
load g_f
options = optimset('TolX',.000001);
s=size(g_f,2);
i=1;
global i

for i=1:s
start=[g_f(2,i),g_f(3,i)];
[x,fval,exitflag] = fminunc(@(x)gimbal(x),start,options);
g_i(1,i)=x(1,1);
g_i(2,i)=x(1,2);
fval_g(i)=fval;
i=i+1
end

44

THIS PAGE LEFT INTENTIONALLY BLANK

45

LIST OF REFERENCES

1. Prince, Robert. Autonomous Visual Tracking of Stationary Targets Using Small

Unmanned Aerial Vehicles. Master’s Thesis, Naval Postgraduate School,

Monterey, CA, 2004.

2. Kaminer, Isaac. Introduction to Aircraft Navigation. Lecture Course. Naval

Postgraduate School, Monterey, CA, 2005

3. Piccolo. 18 Sept 2005 http://www.cloudcaptech.com/piccolo.htm

4. Naval Postgraduate School Support for Combatant Commanders and the Office

of the Secretary of Defense. 21 Sept 05

<http://www.nps.edu/AboutNPS/NPSDistinctive/NPS%20COCOM-

OSD%20Support.pdf>

http://www.cloudcaptech.com/piccolo.htm

46

THIS PAGE INTENTIONALLY LEFT BLANK

47

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Dr. Isaac Kaminer
Naval Postgraduate School

 Monterey, California

4. Dr. Vladimir Dobrokhodov
Naval Postgraduate School
Monterey, California

5. Dr. Anthony Healey
Chairman, Department of Mechanical Engineering
Naval Postgraduate School

 Monterey, California

	I. INTRODUCTION
	A. BACKGROUND
	B. SUAV
	C. CONTROL SYSTEM
	Piccolo Autopilot
	2. NPS Autopilot

	D. CAMERA
	1. Gimbal Pan/Tilt Unit
	2. PerceptiVU

	II. PROBLEM FORMULATION
	A. PROBLEM
	1. Gimbal Angle Errors

	B. AVAILABLE DATA
	1. Loading Data
	2. Geodetic to ECEF
	3. ECEF to LTP
	4. Target Position in Camera Frame
	5. Pixel Calculation

	C. ANALYSIS OF THE RESULTS. CONCLUSION

	III. SYSTEM DEVELOPMENT
	A. OVERVIEW
	B. COMPUTING FOUND ANGLES
	C. COMPUTING IDEAL ANGLES
	1. Simulink Portion
	MATLAB Portion

	IV. RESULTS
	A. IDEAL ANGLES
	B. COMPARING RESULTS
	1. Gimbal Angles

	C. RECOMMENDATION

	APPENDIX A: SIMULINK BLOCK DIAGRAMS
	A. LOAD DATA BLOCK
	B. LLA TO ECEF BLOCK
	C. ECEF TO LTP BLOCK
	D. TARGET POSITION IN CAMERA FRAME BLOCK
	E. COMPUTE PIXEL BLOCK
	F. COMPUTE FOUND ANGLES BLOCK

	APPENDIX B: MATLAB CODE
	A. FMINUNC MATLAB HELP FILE
	B. GIMBAL.M
	C. GIMBAL_OPTIMIZATION.M

	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

